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I. INTRODUCTION

The interior ballistic models to date have captured the overall

performance of the regenerative liquid propellant gun. Accordingly, recent

interest has shifted toward a more complete treatment of the regenerative

liquid propellant gun interior ballistic process. In an attempt to describe

one of the details of the process, we address the distributions of velocity

and pressure in the liquid reservoir of the regenerative liquid propellant

gun. The present work is a continuation of the treatment of the liquid

injection process presented by the authors1 2 in which a simplified treatment

of pressure distribution was considered as part of the injection model. The

distributions are derived from a modified Lagrange distribution with area

change to account for the shape of the regenerative piston and the center

bolt. The results are then compared to a one-dimensional simulation.

Ii. CONTROL VOLUME

The regenerative liquid propellant gun process, illustrated in Figure 1,

is initia:eJ ty firinc a primer which pressurizes the initial combustion

chamber. The chamber pressure acting on the piston forces it to the rear,

compress:na the liquid propellant in the reservoir. After an initial

transient period, the pressure in the liquid reservoir will be greater than

the combustion chamber pressure due to the differential area across the

in-ection Fistr., resultinq in the in-ection of liquid propellant into the

combustion chamber.

In this paper we are concerned only with the liquid propellant

reservoir. The combustion chamber pressure is taken from an experimental

firing of a 30-mm Concept VI fixture (shown in Figure 1), and input as a

boundary condition. The control volume is shown in Figure 2. The contours of

the piston and the reservoir are approximated by straight line segments as

indicated. The center bolt and the transducer block are fixed in the

reference frame of the chamber. The origin of the coordinate system, fixed in

t-e chamber frame of reference, is at the rear (left hand) end of the

reservcir, and x is the coordinate along the bolt as shown in Figure 2. The

Fa ton moves rearward with a velocity up(t), and the points si(t), s2 (t), and



s3(t) are the coordinates of fixed stations on the inner contour of the piston

with respect to the origin, as shown, such that these coordinates vary with

time as the piston is displaced to the left. The sign convention for piston

velocity is opposite of that for fluid velocity. Note that the right hand

face of the control volume coincides with the exit plane of the injection

orifice, S3 1 such that the control volume also varies with time.

CONTROL BEFO&E RRZNG

INNER ROD
IAL

OUTER FiHMrN

CONRO VROPLUME qzO

RESERVOIRAND PISTO

Figur A Reenr ie 2.qui otroelan Voun ihanelrPso



III. BACKGROUND

A simplified treatment of the control volume detailed above which couples

the piston motion and the liquid velocity was described in an earlier

paper. 1 2 The goal was to describe the injection process by coupling the

motion of the regenerative piston and the liquid injection thereby capturing

the time-dependent nature of the discharge coefficient.

A simulation of a firing of a Concept VI 30-mm test fixture at BRL had

indicated that the model exhibited a mean value of the discharge coefficient

which agreed quite well with that of the experimental data in the steady state

operation, but there was lack of agreement in the early values and in the slow

rise to steady state. Since the model had not addressed the Belleville

springs, which are utilizec in the test fixture to permit the piston to clear

the seal on the nose of the center bolt, the springs were included in the

model with results shown in figures 3, 4 and 5. The comparison between

experimental and predicted piston motion, with the inclusion of the Belleville

springs, is shown in figure 3. The actual piston travels about 0.55 cm,

hesitates as the rear transducer block comes to a stop against the Belleville

springs, and then accelerates and smoothly completes its stroke. The

simulation shows the same qualitative motion as the actual piston. However,

the simulated piston position passes through the transient stage more quickly,

with the hesitation occurring approximately 1 ms before that in the

experiment. The reason for the discrepancy is not clear. In figure 4 a

similar result is reflected in the liquid pressure. Qualitatively the

simulation reflects the early oscillations in experimental liquid pressure,

and, after an initial transient period, remains in close agreement. However,

the oscillations occur too early in the simulation. The comparison between

the discharge coefficient derived from experimental data and that predicted by

the model is shown in figure 5. Although the mean values at steady state are

in reasonable agreement, the model does not capture the slow rise to steady

state.
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In order tc exa-ine the discrepancies between the experiment and the

model, several srn!l.fications in the model were examined and removed. The

theoretical role" can be broken into two ma:or components. The first involves

the derivat.n cf equations describing the distributions of velocity and

pressure in the liqu:d reservoir from a continuun analysis. The second

involves the courli r.c of these equations into the momentun equation for the

piston. In this paper the first stage of the derivation is discussed, namely

the distributions of velocity and pressure in the liquid reservoir. In the

earlier model the contours of the outer piston and inner bolt were not

included in the representation of the pressure distribution in the liquid

reservoir; they are now explicitly considered. It is not possible to evaluate

the impact of these additional considerations on the comparison with

experimental data until the second stage of the derivation is completed.

Therefore, to assess the validity of this stage of the modeling, a comparison

is made to a one-dimensional simulation of the liquid reservoir.



IV. EQUATIONS OF MOTION FOR THE FLUID AND VELOCITY DISTRIBUTION

The equations of motion for the fluid, continuity and momentum equations,

are written to include area change as the piston moves rearward. we note that

the area through which the fluid flows is a function of both time and position

since the contoured piston moves rearward over a contoured bolt. The

equations of motion are then

a/at (pA) + a/ax (pvA) = 0 (1)

a/art (pvA) + a/ax (pv 2A) =- A aP/ax . (2)

We obtain the equation for the velocity distribution from the continuity

equation (1). From (1), using the Lagrange approximation, i.e. assuring that

the density is szatially uniform at each timestep, ap/ax = C, we have

A (1/p) ap/at = - aA/at - aax (vA) . (3)

The qoal is to eliminate the partial derivatives with respect to t, time, and

recast the equation in 2/ax . The resulting equation is then integrated with

respect to x to obtain an expression for velocity as a function of time and

position. Consiaer

= - - (4)
at =u 7 v 2

R V
R

where mL is the mass of liquid in the reservoir, and VR is the volume of the

reservoir.

Now,

L - P v3 - pUpA3 (5)

and

S



R =-Up (A RA) (6)

1 ap -[v3A3 - upAR

such that, -- -[ - (7)
Pt VR

where v 3 is the velocity of the exiting liquid, A3 is the exit vent area, AR

is the projected area of the piston on the liquid reservoir side, and up is

the velocity of the piston. The exit vent area, A3, is the annular area

between the piston at s3 and the bolt. A 3 is time dependent, but it is not a

function of position x. The time rate of change of mass includes both the

mass flux through the orifice with respect to the bolt and the additional mass

flux intc the chamber due to the piston motion. It is notea that we have

chosen a laboratory reference frame stationary on the bolt with 0.0 at the

back wall and the pos::2ve x-axis forward. Since the natural motion of the

liquid is to the right through the vent, and the natural motion of the piston

is to tne left toward the back wall, v3 is positive to the right while up Is

posit:ve tc the left.

It can be show. tga: the tire rate of change of area is

AUx, t = u r 2 (x,t))

where F(x,t) is the radius of the inner contour of the piston where we have

explic~ty noted that area is dependent on position and time.

Equation (3) then becomes

3 A R(x,t)] 3 -uA
.(vA) u + --t3 -- A(x,t) . (8)xp a x - v R

Integrating with respect to x and noting that v(0,t) = 0 we obtain

.[2_ 2( pR
R .Px,t)) ] v3A -uA0 3 A3 p R V(xt)

v(x,t) = u --------------- ---+ (9)
A(x,t) V A(x,t)

R

7



where V(x,t) is the volume of the reservoir from the back wall to the position

x. Equation 9 defines the velocity distribution in the liquid reservoir.

It is useful to rewrite equation (9) in terms of the liquid areas. Note that

- R (x,t)) a i[(R20 - r 0 (R xt) - rb 2(X))] - AW - A(x,t)

where we have used the fact that the radius of the bolt varies by only a small

amount over its length, e.g. the maximum radius is 1.79 cm and the mimimum

1.65 cm. Thus r2 0 - rb 2(x) is a very small number. Using this approximation,

equation (9) becomes

u (AW - A(x,t)] v 3A - upAR] V(x,_,
v(x,t) = 3 + - V(x, (10)A(x, t) VR A(x, t)

V. PRES$LIE DISTRIBTION

Using equa-:ion (1) in (2) an! integratinc with respect to x from 0 to x

we obtain

2 -

P(x,t) = P c(t) - 1/2 v (x,t) - D 'O v(x',t) dx' (11)
0

in which P (t) is the breech pressure at a given time. Integrating the time

derivative of (10)

f X 1 2
a/at v(t,x') dx' = A i dx' - u

w p 0 Awx't) p

+ u 2A x + z fx Vi(XL'I dx'
p w A(x,t) p 2 A(x','t)

r x x V(x'.t)d,
--- dx' +zu x - z2U (12- z ,) 1U Z1 U

,0) Ax' ,tlUp 0 A 2(x',t)

8



where

=, v (13)

V RR

and we have used

I___ aA(x',t) - 1u(5

rx V (x' , t) ;.YX't) AX' ' V~x ,t) dxl u (16)

3 , Pkx,t')A~x,-:yJx 3P(x,t)A(x,t)dx (7

Al;(X, t x V

wltn i(t) the stace-rear. pressure.

Thus, the breech pressure Po(t) is given by

P (t) = P(t) + .-- f3 v t)~ A(x,t)dx

2V

R 0



or

pp Aw 3 1

0 VR 0

+J-_FfA(x,t) dxdx ATTx',t) 2
vR 0 0 t

+ (IX- - - - d+ ---------J---dx

X p s3 PZ 2  s' fx V(xl,t)
- -- xA(x,t)dx + -- f A(x,t)------------dx'dx

?. 0R C 0

V;z S 3PZ1u A ws
3VcX, t~x ---------- f I A ,t fx--- ----- oxdx

V F 0 A(x',t)

~ 3 ~xt)rx V(x It) 1 r S
*'~t 2 V : --- d'x+x(x,t)dx

F C 0 A(x',t) R 0

The relationship of breech pressure to P(x,t) is given by

P(x,t) = P 0(t) -1/2pv 
2 (x,t) - P 4 (x',t) dx' .(20)

Combining (10), (12), andi (19)



= ~)+ 2V R 0 xt) d

pAwu S A(X,t) Jx dx' dx
V R 0 0 A(X',t)

pz 3V2(x,t) p w z1 3 V(x,t)
+V A- f dx + J dx

2R 0 A(~)vR 0 -Xt

S- s. fs2 S3 Vxt
.r 3 XA(x,t)-dx + f A(X,t) fxVj 't dx'dx

R 0 0

>3 p 3A s
-,-j A(X,t) Aa' x OX

3 A (X t x V x',t) dx'dx

~2 A v ~ 2 (xt)z 2 pu pA V(x,tlz I

2A'(X,t 2A (x,t) A Cx,t)

+ +u [- V~~)A 6+ pzu A I-j dx'
A(x,t) w p 1 p w 0 x't

rx .'x' t) +rx V(X, t)
P Tx- PZ 2  .. x' t) d x' + 1 U u 2-.-- dx'

C A (x, t)
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-z 1 + pup IS3  (
I VR 0

The integrals involve A(x,t), the area at x at a given time, ard V(x,t),

the volume of the reservoir from the back wall to x at a given time. The

integration is performed numerically.

In order to numerically integrate, we first develop expressions f r the area,

A(x,t), and volume, V~x,t).

Approximating the contour on the inner surface of the -1iston by the

dashed straight line as indicated in Figure 1, we can express the radius of

the piston as measured from the center line as

R - R1

R(x,t) R - ---2-- (X - s I - H(s -x)])

FS2- x) + R 2 1 -H(s 2- x)] H(s 3- >1(22)

where x indicates the position on the bolt, R, indicates the radius of the

piston at si an-J R2 is the radius of the piston at S2 Fx) is the Heaviside

function. defineC as H(x)=O for x<O and H(x)=l for x>=O. The radius of the

inner surface of t-e piston at a position x is time depe- sent since the piston

is moving.

Similarly, the radius of the bolt at any positicn x on the bolt can be

expressed

r (x)={ r + --- (x - x)[1- H(x- x)]} H(x -x) +b x2- x 1 2

r 2 H(x 2 -x)) H(x 3 - X) *(23)

The cross-sectional area of the liquid is then. gi :en, by

12
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A(x,t) = WR 2(x,t) - 'rb (x) (24)

and the volume of liquid, V(x,t), is

V(xt) - fx A(x',t) dx' . (25)

0

Returning to (13), although it is possible to obtain an analytic solution

for some of the integrals, the representation is dependent upon the location

in the reservoir and the particular geometry of the problem. Thus, to

maintain the generality of the solution, it was decided to obtain the values

of the integrals numerically. This procedure yields satisfactory results, and

it was felt that no further refinement was necessary. The pressure

distribution is then given by (21) with the velocity v(x,t) given by (10).

VI. RESULTS

The velocity and pressure distributions predicted by the code are

reasonable fror a fluid dynamics viewpoint, namely, a constriction causes the

velocity tc rise and the pressure to fall. In particular, the calculated

distributions reflect the geometry of the 30-mm test fixture at the Ballistic

Research Laboratory.

The predicted velocity and pressure distributions can be classified into

one of two cases. For the malority of the injection cycle, the piston head is

over the flat portion cf the bolt as shown in Figure 6 with points A, B and C

denoting fixed locations on the piston as shown. The slant section of the

piston is between A and B with the flat vent from B to C. A typical pressure

distribution computed by the model is shown in Figure 7 at 3.0 ms where the

piston head is positioned over the flat section of the bolt. The pressure

distribution follows the shape of the piston as expected; relatively constant

along the flat portion of the piston, decreasing over the converging slant

section of the piston from A to B, and leveling out again through the vent

from B to C. The slight increase in pressure of approximately I MPa may

indicate difficulty with the numerical integration or differentiation at some

timesteps. From the Bernoulli equation, we would expect the velocity

13



distribution to generally follow the pressure distribution inversely, i.e. as

the pressure decreases, the velocity increases. Figure 8 shows the velocity

distribution (expressed in scientific notation) at 3.0 ms with the expected

result; the velocity gradient is shallow from the back wall of the reservoir

to the beginning of the slant section at A, increases from A to B on the

converging slant section of the piston, and maintains a relatively constant

velocity through the vent. Although the velocity appears to be zero over the

flat section of the piston, a more detailed look at the velocity distribution

shows a linear increase from zero at the back wall to approximately 60 cm/s at

position A, the beginning of the slant section of the piston.

S

A-C

Figure 6. Relative Position of the Piston and the Bolt for the Major

Portion of the Injection Cycle

14
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A second case of piston position relative to the bolt is shown in Figure

9. During the startup cycle the piston is positioned such that the vent from

B to C passes over the slant section of the bolt from D to E. Thus, exiting

liquid encounters a converging area from A to B, a flat section of the vent,

and an additional converging area when C is between D and E. It is expected

that the predicted pressure and velocity distributions will reflect the

additional area change. The pressure distribution at 1.3 ms is shown in

Figure 10. Again the pressure is stable over the flat section of the piston,

drops between points A and B, and flattens through the vent. However, as the

liquid encounters the convergent area on the bolt from D to E, the pressure

distribution shows an additional drop. The velocity distribution in the

reservoir at 1.3 ms, Figure 11, again shows the expected relationship between

the velocity and pressure distributions.

The magnitude of the velocity and pressure gradients at 1.3 ms is lower

than at 3.0 ms, reflecting the lower piston velocity near the beginning of the

injection cycle.

CI

Figure 9. Relative Position of the Piston and the Bolt for the Beginning
Portion of the Injection Cycle

16
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VII. COMPARISON TO ONE-DIMENSIONAL MODEL

A comparison of the predicted velocity and pressure distributions to a

one-dimensional model developed by Coffee4 gives a quantitative assessment of

the model. The one-dimensional representation differs from the model

described in this paper in that the back wall is moved to simulate piston

motion as taken from an experimental firing of the 30-mm test fixture at the

BRL. Since the velocity of the back wall is non-zero in the one-dimensional

model, the piston velocity was subtracted from the I-D velocity distribution

for purposes of direct comparison. The piston positions were matched with

respect to the fixed coordinate system on the bolt at a time of 3.4 ms in both

models.

The conpariscn of the velocity distributions is shown in Figure 12.

Quantitatively tne two models show good agreement on the flat section of the

piston and the vent with a difference in exit velocities of about 1%. The

ma'or discrepancy between the models occurs on the slant section of the

piston. This is felt to reflect the apprcximation of the partial differential

equations with crdinary d:fferential equations.

The ccnpariscn of pressure distributions between the model and one-

dimensional sirulation is shown in Figure 13. The gradients show good

qualitative and cuantatative behavior with a difference of .2% at the back

wall.

Future work will focus on integration of these equations into the

complete injector model.

18
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VIII. CONCLUSIONS

A simplification of the continuity and momentum equations yields

equations to describe the velocity grad;ent and pressure gradient in the

liquid reservoir of a regenerative liquid propellant gun. The resulting

equations are applicable to other time-dependent geometries provided the

assumption that ap/x = 0 is acceptable. When applied to the 30-mm test

fixture at the BRL, the velocity and pressure distributions are reasonable

from a fluid dynamics perspective and compare favorably with results from a

one-dimensional code. Future work will concentrate on fully exploiting the

pressure distribution equation in modeling the relationship between piston

movement and liquid flow from the reservoir.

20
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LIST OF SYMBJLS

A3  Cross-sectional area of the vent, cm
2

AL Cross-sectional area of the liquid, cm
2

AR Cross-sectional are of the piston on reservoir side, cm
2

*A(x,t) Cross-sectional area of the piston at x, cm
2

AW  Cross-sectional area of the piston at the back wall, cm
2

L Mass flux of liquid into the combustion chamber, gm/s

P3  Combustion chamber pressure, MPa

Space mean pressure, MPa

r0  Radius of the bolt at tne back wall, cm

rb(x) Radius of the bolt at x, cm

R(x,t) Radius of the pistor at x, cm

U p Velocity of the pFiston, cm/s

P Acceleration of th.e piston, cm/s
2

p

v3  Velocity of the Aiquid at s3, cm/s

3 Acceleration of the liquid at s3 ? cm/s
2

VR Volume of t'e liquid reservoir, cm
3

P L Density of t-e liquid at a given time, gm/cm
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APPENDIX A

The fdllowini data base was utilized to obtain the reported results.
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Concept 6, 30-mm fixture--Rd 8 after springs

COMBUSTION CHAMBER AREA - 44.84700
PISTON AREA--C CH SIDE - 34.32600
PISTON AREA--RES SIDE - 23.27800
LENGTH L PRIME - 1.43200
LENGTH OF VE11T - 1.04000
PISTON OFFSET - 0.54400
PISTON MASS - 2109.20000
VOLUME LIQUID - 172.62764
VENT OPTION - 2
STRAIGHT LENGTH OF PIST - 5.94680
MAX PISTON TRAVEL - 7.37880
DENSITY LIQUID - 1.43700
Kl - 5350.00000
K2 - 9.11000

FRICTION LOSS LIQ OPTION- 0
FRICTION LOSS PIS OPTION- 0
TIME-C CH PRES DATA FILE: ptoffb4.dat
GEOMETRY DATA FILE: r8geo55.dat
GRAPH DATA FILE: 30mmc6.gra

INITIAL PR IN RESERVOIR - 29.00000
INITIAL VEL IN VENT - 0.00000
INITIAL PISTON VELOCITY - 358.00000
INITIAL PISTON POSITION - 0.00000
INTEGRATOR--TINC - 0.00010
INTEGRATOR--EPS - 0.00001
INTEGRATOR--METH - 1
INTEGRATOR--MITER - 0
INTEGRATOR.-KWRITE - 0

DIFFERENTIAL EQUATION SET: 1

RAD PIST3 - 1.83000 RAD PIST2 - 1.83000 RAD PISTI - 3.28000
RAD BOLT3 - 1.79770 RAD BOLT2 - 1.79770 RAD BOLTI - 1.65000

VOL FUEL12 - 17.90837
VOL FUEL23 - 2.02661

FLAT LEN BOLT - 0.55880 SLANT LEN BOLT - 0.76000
IWRITE - 0

PR DISTRIBUTION OPTION - I
NO. OF PTS FOR DIST - 20 IP - 1
VEL, PRES DIST DATA FILE: distvp.gra
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